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In this paper the authors describe an experimental study to identify the

damping laws associated with a squeeze-film vibration damper. This is achieved by

using a non-linear filtering algorithm to process displacement responses of the
th

damper ring to synchronous excitation and thus to estimate the parameters in an n -

power velocity model. The experimental facility is described in detail and a

representative selection of results is included. The identified models are

validated through the prediction of damper-ring orbits and comparison with observed

responses.

I NTRO DUCTIO N

A fundamental problem in rotor-bearing dynamics is the experimental

determination of mathematical models to represent the dynamics of oil-film bearings,

sometimes referred to as the problem of bearing identification. One category of

oil-film bearing is the squeeze-film damper which often forms part of an isolation

system for vibration control in turbomachinery. Damping is provided by lubricant

supplied to an annulus between the bearing housing and damper-ring. The damper ring

does not rotate but is free to whirl in response to applied excitation: thus the

lubricant in the annulus is able to dissipate vibrational energy.

The simplest linear analysis of the squeeze-film dynamics indicates that a

model involving two viscous damping coefficients can be used to characterise the

behaviour of the film (ref. I). It is generally accepted that such a model can

account for the damper ring's response to small perturbations around the concentric

position. However the comprehensive tests reported by Tonnesen (ref. 2) show that

larger excursions about eccentric positions cannot be predicted using a linear
model.

In the last five years considerable progress has been made in the development

of techniques for bearing identification. Most attention has been given to

frequency-domain methods which have been used to estimate direct- and cross-damping

terms associated with a model squeeze-film isolator (ref. 3) and can readily be

extended to identify models of multi-mode rotor-bearing systems (ref. 4). However,

frequency-domain algorithms are based upon a prior assumption of linearity and thus

significant non-linearities cannot readily be accommodated. At Liverpool the

identification of linearised squeeze-film models has, in general, been approached

using time-domain techniques. A series of numerical experiments indicated that a

least-squares filtering algorithm is particularly suitable for estimating the four

squeeze-film damping terms from displacement responses to synchronous excitation

(ref. 5). A model squeeze-film isolator was constructed and a comprehensive survey

of the linearised dynamics has now been completed (ref. 6). A well-known advantage
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of the time-domain approach is that certain geometrical non-linearities can be

accommodated and, following the success of the linear experiments, work began to

identify non-linear models of the squeeze-film dynamics.

In this paper the authors describe the first series of non-linear experiments.

The objective of these tests was to identify the damping law of the squeeze-film

from records of large amplitude displacements _ single-frequency excitation. This

was achieved by estimating the parameters in n -power velocity models of the

squeeze-film dynamics. The resulting models were validated by using them to predict

the damper-ring's orbits and comparing these with directly observed responses. The

significance of the results is discussed in some detail.
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IDENTIFICATION OF LINEARISED SQUEEZE-FILM DYNAMICS

Before describing the non-linear experiments, the more traditional linear
problem will be defined and the results of some recent llneai identification

experiments will be summarised.

Equations of Motion

Consider a lumped parameter model of a squeeze-film vibration isolator such as

that considered by Holmes (ref. I). In fixed co-ordinates the equations of motion
are written

dZx dx dy
m_-_r + Fx(X, _-_, y, _-_) + ksX : fx

d2y dx d_m d--_ ÷ Fy(X, _-_, y, ) + ksY = fy

(1)

where all terms are defined under "Symbols".

Equation (I) implies that the forces F and F developed within the squeeze-

film are functions of both displacement andXveloci_y in the x and y directions. The

objective of bearing identification is to determine these functions experimentally.

Experimental determination of the functions F and F usually involves two steps:

the choice of a suitable model structure foll_wed byYthe estimation of unknown

parameters in this structure. At the simplest level it is usual to assume that the

squeeze-film damping forces in the x and y directions are proportional to the

component of (damper-ring) velocity in the respective direction. This leads to the

expressions

dx dy
F = c -- F = c -- (2)
x xx dt ' y yy dt

so that equations (I) are uncoupled and identification requires the determination of

the two constants of proportionality, i.e. the viscous damping coefficients c and

T nenC_-esThis type of model was used in the experimental parametric study described by
(ref. 2). In any actual squeeze-film isolator, imperfections in the

construction of the damper-ring and bearing housing will invariably produce cross-

axis damping forces in the squeeze-film. If the cross-axis forces are signicant in

relation to the direct-axis forces then the identification of coefficients in an

uncoupled model (equation (2)) will lead to the misinterpretation of the results.

Such misinterpretation can be avoided by assuming that coupling is present, i.e.

F = c dx dy F = c dx dy
x xx d--t+ Cxy d--t' y yx d-t ÷ Cyy d--{ (3)
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and estimating the four unknown damping coefficients c , c and c Some
x xrecent work by the authors has resulted in a promisingXX'ew e_per_mental _chnique

for determining these four damping coefficients.

Numerical Experiments

In reference 5, one of the authors proposed a scheme of combined state and

parameter estimation for identifying the four squeeze-film damping terms.

Essentially, the four unknown coefficients were defined as state variables and an

algorithm for non-linear state estimation was used to reconstruct the coefficients

from time-series records of the displacement responses of the damper ring to

synchronous excitation. A series of numerical experiments showed that such a scheme

was feasible and moreover that the estimation algorithm was relatively insensitive

to the effects of (zero-mean) measurement noise. Further numerical studies showed

that the scheme could readily be extended to estimate the four damping coefficients

associated with a journal bearing oil-film (ref. 7).

Experiments with a Model Squeeze-Film Isolator

Following the success of the numerical experiments a model squeeze-film

isolator was constructed so that the technique in reference 5 could be applied to

real data. The experimental facility will be described in detail in the sections

which follow. A comprehensive survey of the dynamics of the squeeze-film damper

(ref. 6) showed that the four squeeze-film damping terms could be readily identified

using non-linear state estimator. As expected, there were considerable

discrepancies between the identified coefficients and those predicted by short-

bearing lubrication theory (ref. I). However, by comparing the ability of both

identified and theoretical coefficients to predict the amplitude and phase

characteristics of the isolator's frequency response, it was shown that the

identified coefficients were the more effective, especially for characterising the

cross-axis dynamics.

The application of a non-linear technique to estimate linearised coefficients

may appear to be a computationally inefficient way of solving an apparently simple

problem. However the advantage of this approach is that it can, in principle, be

extended to accommodate certain types of non-linearity. The motivation behind the

body of work described in this paper is to determine if non-linear models of the

squeeze-film dynamics could be identified without imposing unrealistic requirements

on the experimental facility.

NON-LINEAR IDENTIFICATION

Introduction

The theory underlying the linear identification experiments described in the

previous section is based upon the assumption that the damping forces in equations

(2) and (3) arise from small perturbations of the damper ring. Even when this

assumption seems justified there can be large discrepancies between theoretically-

and experimentally-derived coefficients, especially at higher values of static

eccentricity ratio (ref. 2). To investigate these discrepancies, and to be able to

account for squeeze-film behaviour under large perturbations of the damper-ring, it

was decided to attempt to identify the damping law of the squeeze-film. This
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implies t_ estimation of the parameters (coefficients and exponents) associated
with an n -power velocity model of the squeeze-film.

A Damping-Law Model

As part of a related study it has been established that the damping law

associated with a single degree-of-freedom dissipative element can be identified

from forced response measurements (ref. 8). Owing to the significant amount of

cross-axis coupling it was not considered feasible to employ so simple a model of

the squeeze-film. Consequently a tentative model to include cross-axis effects was

proposed, i.e.

dxlnxx .dx, Id_InXYsgnFx = Cnxx d-_l sgn_-_) + Cnxy ( )

F : c
y nyx dxlnyx dy_-_ sgn(_) + Cnyy Idylnyy (_)d-{l sgn

(4)

th
which assumes that the damping forces are proportional to the n -power of the

appropriate components of damper-ring velocity. Identification of such a model

requires the estimation of eight parameters, four coefficients c , etc and four
• n x

exponents n etc. from records of the damper-ring's dlsplacemen_ response. To
xx',

reduce the number of parameters to be estimated in these preliminary experiments it

was decided to assume that the cross-damping terms were reciprocal, i.e. c

c , n = n . This had the effect of reducing the number of parametersn_ be

nyx _x_ to _Xx. The consequences of making this simplification will be discussedes_ima_ea

later.

Combined State and Parameter Estimation

To begin the development of the necessary estimation equations, consider the

substitution of the functions F and F from the damping-law model, equation (4),

into the equations of motion (17. TheYfour "physical" state variables usually

associated with a vibrating system with two degrees of freedom are x I _ Xl, x
dx/dt, x_ _ y and x, _ dy/dt. Substituting these expressions into equations _I) and

(4) and _oting the _x1/dt : x_ and dx_/dt = xL, results in a set of four non-linear

differential equations. A further si_ "parameter" state variables, corresponding to

the six unknowns in equation (4), are defined, i.e. x 5 _ Cnxx/m, x. _ n , x_
c /m, x_ _ n , x^ _ c /m and x_^ _ n . If it is assumed tha_ theX_ime _
nx o x _ n /u

derivatives of _hese six _tra states areY_ero (to characterise time-invariant

parameters) then six further equations emerge to augment the four original state

equations. The ten equations can be collected together and written in the form:

dx : f(x,t) (5)
dt

where

and
: Ix I x2 x3 x4 x5 x6 x7 x8 x9 x10]
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f(x,t) =
m

x 2

x6 x 8

-x5]x21 sgn(x2)-x7]x41 sgn(x4)-_n2X1+Ux

x 4

x 8 x 1
-x71x2[ sgn(x2)-x91x41 0sgn(x4)-mn2Xs+Uy

0

0

0

0

0

0

To characterise the measurements on the physical system, a sensor equation is

introduced:

_(t) = _(_,t) + (observation noise) (6)

where h(x,t) is a vector function which, if necessary, can account for observations

which are non-linear functions of the states. For the problem in hand, however,

assume that the t_o displacement states x I and x 3 are available directly and thus

h(x,t) = Ix I x3] .

Given this formulation, the objective is to employ the information contained in

the vector of observations z(t) over the time interval 0 < t < T to predict the

behaviour of the state vector x over the same interval. _inc_ x contains the six

unknown parameters associated With the damping law of the squeeZe-film, the

estimation of x automatically produces estimates of the unknown parameters. A

useful by-prod_ct of this parameter estimation scheme is that the estimates __ and

_ of the displacement states provide instant prediction of the orbital motio_ of

t_e damper-ring on the basis of the identified model and thus serve to validate the

estimated parameters.

An Algorithm for Non-Linear State Estimation

To estimate the state vector x from the vector of observations z requires an

algorithm for non-linear state estimation. The application of one s_itable

algorithm is described in detail in reference (ref. 5). For the sake of

completeness, the relevant equations are summarised here. The algorithm (ref. 9) is

based upon a predictor-corrector type equation:

d__ : f(_,t) + r(T) {z(T) - h(_,T)}
(7)

dT

the solution of which produces an estimate, denoted _, of the state vector. The

driving term in equation (7) is the vector of residuals {z(T) - h(_,T)} which is

weighted by the time-varying matrix F(T). The matrix r(T) is made up of three

terms, i.e.
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!(T) = 2 !(T)_(_,T)_ (8)

The matrix P(T) is the error covariance array which evolves in time according
to the equation

8fT(i,T)dP _ 8f(i,T) p + p
dT 82 82

m

8
+ 2 P-_ [H(__,T)Q{z(T) - h(!,T)}]P (9)

and must be computed in parallel with equation (7). The remaining two terms in

equation (8) take account of the structure of the observations, i.e.

H(_,t) _ ah(_,T)/8_

and Q is a matrix which allows constant weightings to be attached to each sequence

of observations.

For the problem in hand the estimation of the state vector x from equation (7)

involves the solution of ten non-linear differential equations. --The matrix P is of

dimension (10 x 10) and thus the estimation of P from equation (9) involves the

solution of one hundred non-linear differential--equations. Since P is symmetric

(ref. 9) only 55 of these equations need to be solved. The only p_actical way of

solving these equations is to employ a numerical method operating on the sequences

of observations obtained from the experimental facility.

EXPERIMENTAL FACILI TY

The model squeeze-film isolator used in the experiments is shown in the general

arrangement drawing, figure I. Essentially the isolator consists of two main

components

(i) a non-rotating damper ring, symmetrically supported by a flexible shaft;

(ii) a bearing housing containing two plain lands, separated by a central

circumferential groove.

The flexible shaft provides the static load capacity while a film of oil in the

annulus between the damper ring and housing provides the damping forces. The oil is

force-fed to the annulus by a pump through holes at the top and bottom of the

circumferential groove. No end seals are fitted and so the lubricant is free to

discharge into a reservoir prior to re-circulation. The critical bearing and

suspension parameters are Bearing land length 12.0 mm; Damper-ring radius 60.0 mm;

Radial clearance 0.254 mm; Damper ring mass (per land) 4.5 kg; Stiffness of

supporting shaft (per land) 250 kN/m. There are no rotating components in the

experimental facility and excitation of the squeeze-film is provided by two

electromagnetic shakers, mounted at right angles to each other, as shown in figure

I. Using this arrangement any desired form of forcing can be provided. In

particular, if each shaker is provided with a sinusoidal signal of identical

frequency and amplitude, but displaced in phase by 90 ° , then synchronous unbalance

forcing is readily simulated.
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The static eccentricity ratio of the squeeze-film bearing is adjusted by moving
the bearing housing in relation to the damperring. The position of the housing is
monitored using mechanical clock gauges. Other static measurementsare the
lubricant pressure at the inlet to the housing and the lubricant temperature as it
discharges from the annulus. In the absence of rotation there is no significant
temperature drop across the squeeze-film.

Instrumentation for the generation of dynamic forces and monitoring of the
responses is shownschematically in figure 2. Forces applied to the damper ring are
measuredby quartz load cells connected to suitable charge amplifiers. The
displacement responses of the damper ring are measuredby two sets of non-contacting
capacitance probes, two in the vertical plane and two in the horizontal plane.
Suitable sequencesof input/output data are gathered for subsequent parameter
estimation by a data-acquisition system comprising a 12-bit analogue-to-digital
converter controlled by a digital micro computer. Data are stored on floppy discs
before being transferred for off-line processing to obtain estimates of the
appropriate squeeze-film parameters.

EXPERIMENTALPROCEDUREANDRESULTS

Immediately prior to each set of tests to identify the non-linear squeeze-film
dynamics, the oil ("Shell" Tellus 27) was pumpedthrough the bearing until a steady
operating temperature was reached. A typical oil temperature was 28_, corresponding
to a viscosity of 0.06 N.s/m. During all the tests the lubricant inlet pressure was
held constant at 7 kN/m2. With the bearing housing locked firmly in the desired
position, the damperring was perturbed by forces supplied by the electromagnetic
shakers. The signals supplying these shakers were sinusoidal and of the same
frequency (20 hz) but displaced in phase by 90°. For the linear tests described in
reference 6 the peak-to-peak amplitudes of the applied forces were limited to
approximately 50 N. which produced displacement amplitudes of around 5-10 per cent
of the radial clearance. For the non-linear tests described here, applied forces of

approximately 250 N. were used to produce peak-to-peak displacement amplitudes of

around 50 per cent of the radial clearance. Experiments involving greater

amplitudes are currently in progress but were not possible originally owing to the

limited range of the displacement probes.

Using the procedure described above, non-linear orbits were generated for nine

equispaced values of static eccentricity ratio and for static attitude angles of 0°,
o o

30 and 90 . At each static equilibrium position 1000 cycles of the steady-state

displacement responses in the x and y direction were gathered. With the chosen

sampling interval of 300 _s this produced some six cycles of vibration data -

sufficient according to the results of numerical experiments. The digitized records

of input forces and output displacements were processed according to equations (7),

(8) and (9). Numerical solutions were obtained using a fourth-order Runge-Kutta-

Merson routine.

The results in figure 3 show the evolution of the elements of the state vector

x with time with the damper ring in the concentric position. Figure 4 shows the

damper-ring orbits measured directly and those predicted from identified models for

zero attitude angle and at static eccentricity ratios of 0.2, 0.4, 0.6 and 0.8. To

illustrate results obtained from experiments where additional cross-axis coupling

was induced in the squeeze-film, figure 5 shows the evolution of state estimates for

an attitude angle of 30° and a static eccentricity ratio of 0.6. Again with an

attitude angle of 30° the damper-ring orbits (direct observations and predictions)
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for eccentricity ratios of 0.2, 0.4, 0.6 and 0.8 are shownin figure 6.

DISCUSSIONOFRESULTS

The results shownin figure 3 show that the identified model predicts the
oscillatory responses of the damper-ring (states xl-x a) and produces steady
estimates of the six damping law parameters (states x_-Xln). All the three damping
coefficients (c., c and c ) assumepositive valuesVand the estimates of the
threeexponents"  ,n [and areallclosetounity- thustendingtoconfirm
that for this oper_ing^6onditi6_ the damping forces are viscous. Models of this

form are fully capable of predicting the measured damper ring orbits, even without

prior knowledge of the position of the orbit in the clearance circle, as shown in

figure 4. Figure 4 illustrates how, owing to the amplitude of the excitation forces

and the relatively soft retaining spring, the orbits are displaced away from the

original equilibrium position and towards the centre of the clearance circle.

Nevertheless, a good approximation to the observed orbit is generated by the

identified model.

The results presented in figure 5 for an attitude angle of 30° and static

eccentricity ratio of 0.6 show how, away from the concentric position, the estimates

of the damping law exponents do not converge towards unity but toward approximately

0.7. The estimates of the direct damping terms are still positive (as in figure 3)

but the cross-term is now negative. Figure 6 shows the measured and predicted

orbits for various eccentricities with an attitude angle of 30° . Some significant

departures from the elliptical shape are now evident but the identified model is

still reasonably successful in reproducing the observed shapes. Taken overall, the

performance of the parameter estimation algorithm appeared to improve as the orbits

become more distorted. It is probably fair to speculate that this is due to the

increasing presence of additional harmonics which improves the correspondence

between the observed responses and the coefficients which are to be fitted. Work is

currently in hand to examine this aspect of non-linear identification using

numerical simulation techniques.

Discrepancies between measured and predicted responses still exist but these

are probably due to the relatively simple non-linear damping model which has been

used as the basis for the present study. Obviously the assumption of reciprocal

cross-damping introduces errors and, as yet, no attempt has been made to include

stiffness effects in the squeeze-film. The absence of stiffness effects must call

into question the physical significance of the damping law parameters obtained from

the experiments. The inclusion of squeeze-film stiffness effects is the subject of

ongoing research.

CONCLUDING REMARKS

In this paper the authors have described an experimental study to identify non-

linear models of a squeeze-film vibration damper. A non-linear filteringt_echnique
has been used to estimate coefficients and exponents associated with an n -power

velocity model of the forces developed in the squeeze-film. The results presented

here have been obtained from processing the displacement responses of the damper

ring to synchronous excitation and so it should be possible to apply the technique

to examine the dynamics of industrial dampers and fluid seals.
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The quality of the empirical fits between the observed and predicted orbits is

an indicator of the success of these preliminary experiments• However there are

various modifications to the present processing algorithm which should improve the

accuracy of prediction and enable the physical significance of the results to be

assessed - obvious modifications include the provision of non-reciprocal cross-

damping terms and terms to account for squeeze-film stiffness.
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Fig. 4 Damper ring orbits with zero attitude angle and various values of static

eccentricity ratio: (a) 0.2, (b) 0.4, (c) 0.6 and (d) 0.8.
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Fig. 6 Damper ring orbits with attitude angle of 30 ° and various values of

static eccentricity ratio: (a) 0.2, (b) 0.4, (c) 0.6 and (d) 0.8.
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